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Approximation Method for Rate of Development of Temperature 
Distributions in Cylindrical Foods 

Arthur E. Grosser* 

Department of Chemistry, McGill University, 801 Sherbrooke Street West, 
Montreal, Quebec H3A 2K6, Canada 

Approximations are found for the thermal distributions that develop in cylindrical foods heated in an 
infinite heat bath. By using the concept of the half-heating time, the time elapsed for the temperature 
at a given position in the food to increase by half of its ultimate increase, simple relations are found 
which may aid in estimating these distributions, the rate a t  which they develop, and the functionalities 
of their dependence on the properties of the food. 

INTRODUCTION 

Foods are routinely heated from ambient temperature, 
developing thermal gradients that drive the rate constants 
for the subsequent chemical transformations. Thus, an 
understanding of the properties (and their functionalities) 
that govern the rate of development of these gradients is 
central to food technology. Unfortunately, the heat flow 
equations for infinite cylinders in an infinite heat bath 
are of sufficient complexity that it is difficult to estimate 
the rates of development of these temperature distribu- 
tions, even in a semiquantitative manner, or even the 
manner in which they depend on the properties of the 
food. 

An approximation is presented which offers a simple 
method of estimating these rates and relations. 

MODEL FOR CYLINDRICAL FOODS 

For the purposes of this model the food object will be 
assumed to be an infinite cylinder of uniform composition, 
where the radial distance is r and the outer radius is a. It  
is initially at a uniform ambient temperature, Ta, and at  
time, t ,  equal to zero, is placed in an infinite heat bath at  
temperature Tb. 

The heat flow equations for a cylinder (Carslaw and 
Jaeger, 1959) yield the equation for the temperature, T(r,t), 
at the radius, r ,  and time, t 

[T(r,t) - T,l/AT = 
m 

1 - 2C ~ e x p ( - ~ ~ ~ t / a ~ ) ) [ ~ ~ ( ~ i r / a ) / ~ i J ~ ( ~ i ) ~  (1) 

where AT is Tb - T,, K is the thermal diffusivity, equal to 
KIC,, K being the thermal conductivity and C, the 
volumetric heat capacity, JO and J1 are the zero-order and 
first-order Bessel functions, respectively, and Bi is the ith 
root of the zero-order Bessel functions. 

i=l 

HALF-HEATING TIME APPROXIMATION 

A property that has been profitably used in cooling- 
time studies is the half-cooling time (Mohsenin, 1980), 
which is the time at  which the temperature difference 
between the object and its surroundings is half the initial 
temperature difference. By analogy, we define the “half- 
heating time,” 71/2, to be the time at  which the temperature 
difference between the food and its original ambient 
temperature is half of the initial temperature difference, 
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Tb - T,. That is, at 71/2 

T(r,rlI2) - T,  = O.5(Tb - T,) 
The half-heating condition yields 

0.5 = 1 - 2 { C  exp(-KBi271/2/a2))[Jo(Bir/a)/B,~1(8i)l (2) 

The first approximation is to truncate the sum after one 
term: 

1/4 z { ~ ~ P ~ - ~ B ~ ~ ~ ~ ~ ~ / ~ ~ ~ ) ~ J ~ ~ B ~ ~ / . / ~ ~ / B ~ J ~ ~ ~ ~ ~ ~  (3) 

In ~ , ( ~ ~ r / a )  - I ~ [ B , J ~ ( ~ , ) / ~ I  = K@,271/2/a2 (4) 

71/2 = (a2/Kfil2){1n Jo(Blr/a) - In [B,J,(B,)/~I) (5) 
The second approximation is to use the series expression 

for the Bessel functions (Sokolnikoff and Sokolnikoff, 
1941) 

i = l  

Taking the natural logarithm of eq 3 

Rearranging 

J,(~) = 1 - ( x 2 / 2 2 )  + x4/24(2!)2 - ~ ~ / 2 ~ ( 3 ! ) ~  + 
... (-l)k~2k/22k(k!)2 (6) 

and to truncate JO after the second term: 

Jo = 1 - (234) (7) 
Now the term In JO can, in its turn, be expanded 
(Abramowitz and Stegun, 1970) 

In Jo(x) = ln[l - (x2/4)1 = -x2/4 + ... (8) 
and this series is truncated after the first term: 

In JJX) = -x2/4 (9) 
Now eq 5 has the form 

{a2/[K(81)21]{-X2/4 - In [&J1(81)/41) (10) 
where x = Blr/a. Inserting the values for 81 and J1(@1), 
namely, 2.40483 and 0.519147, respectively (Arfken, 1985) 

(11) 7112 = (a2/~)[0.20133 - (r2/4a2)] 
This is our final equation for the half-heating time. 

TESTING THE HALF-HEATING TIME EQUATION 
We will compare the results of the predictions of the 

half-heating time eq 11 with the exact numerical results 
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Figure 1. Half-heating times, 7119 (min), from exact computation 
VB for K = 0.010 and 0.020 cmz/min, with a held constant 
at 1.0 cm. The lines are the best linear fits for r < 0.9 cm. 
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Figure 2. Half-heating times, 7112 (min), from exact computation 
vs 1 / ~  (min cm-2) with rand a held constant at 0.2 and 1.0 cm, 
respectively. The line is the best linear fit. 

that simulate the experimental behavior of the system, 
namely, eq 1. The computational method used to solve 
eq 1 numerically is to employ the series expansions for the 
Bessel functions (eq 6) carried out to eight terms (k = 7) 
for JO and seven terms (k = 7) for J1, for values of the 
argument x less than 5. The values of these functions for 
larger values of x were calculated from the expressions 
(Sokolnikoff and Sokolnikoff, 1941) 

Jo(x) = ( 2 / ~ x ) l / ~  COS[X - (*/4)1 

J1(x)  = (2/*x)'/2 cos[x - (*/4) - (*/2)1 

The sum in eq 1 was carried to three terms (i = 1-3). 
Heating time curves were generated for selected values 

of r, a, and K and the exact half-heating times, 7112, were 
determined. Parameters common to all models were Ta 
= 293 K and Tb = 373 K. This constituted the data set 
against which the approximate eq 11 for 71p  was tested. 

If the half-heating time approximation, eq 11, is valid, 
a plot of the half-heating time vs the square of r should 
be linear with an intercept equal to 0.20133a2/~ and aslope 
equal to -1/4~. Figure 1 displays a graph of exact half- 
heating times from eq 1 vs r2 for two models over a range 
of r/a values from 0.1 to 0.9. The linear fits shown are for 
data points with r/a less than 0.9 and yield R values of 
0.999. The slopes and intercepts (and their values 
predicted from eq 11 given in parentheses) are -25.2 (-25.0) 
and -12.6 (-12.5) min/cm2 and 19.8 (20.1) and 9.88 (10.1) 
min. (If all of the data points are treated, the R values 
become 0.997.) 

I t  is also possible to test the behavior of the half-heating 
time as a function of the other variables in eq 11, namely 
K and a. Figures 2 and 3 show the exact half-heating times 
as functions of 1 / ~  and a2, respectively, for which this 
equation predicts linear relations. Both plots are very 
linear (R = 11, with slopes and intercepts (and their 
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Figure 3. Half-heating times, 7112 (min), from exact computation 
vs a2 (cmz), for r and x held constant at 0.1 cm and 0.02 cm2/min, 
respectively. The line is the best linear fit. 

predicted values from eq 11) of 0.1904 (0.1913) cm2 and 
8.9 X 10-4 (0) for Figure 2 and 10.03 (10.07) min/cm2 and 
-0.126 (-0.125) min for Figure 3. 

Clearly eq 11 is valid over most of the range of the 
variables but fails a t  large values of r/a, as seen in Figure 
1. Is this consistent with the approximations that have 
been made? 

The conditions that will render the equation invalid 
should occur when either of the two approximations, eqs 
3 and 9, fail. 

Condition 12 implies that the approximation should fail 
at small values of ~ 7 1 / 2 / a ~ .  

exP~-KB12~l/2/a2~~Jo~Bl~/~~/PlJl~B1~l = 
~ X ~ ( - K P ~ ~ ~ / ~ / U ~ ) [ ~ J ~ ( B ~ ~ / ~ ) B ~ ~ ( B ~ ) I  (12) 

This corresponds to the expectation that the approxima- 
tion will fail close to the periphery (small 71/21. It  may 
also be thought of as a condition of the ratio r1/2/[a2/~l. 
If a2/K is denoted as the "response time", t,, then the above 
condition for validity becomes 

71/2 " t ,  
Equation 9 is valid for small values of r/a, which give 

rise to longer half-heating times. Thus, both approxi- 
mations lead to the conclusion that the approximation 
will be valid away from the periphery at  longer heating 
times. 

DISCUSSION 

on the radial distance, r, in a quadratic manner: 
The approximate equation for 7112 shows that it depends 

rlI2 = - ( 1 / 4 ~ ) r ~  + 0.20133a2/~ (13) 

Thus, for material of given composition and fixed K, 71/2 
will change with the square of the radial distance within 
the cylindrical object with a sensitivity inversely propor- 
tional to the thermal diffusivity. For a given value of r, 
71/2 will depend only on K and a, again in expected 
manners: for large K ,  the half-heating times becomes small, 
and for large a they become large. 

In general, 7112 is independent of the initial ambient 
temperature, Ta, the bath temperature, Tb, and even their 
difference, Tb - T,. A quick qualitative sketch of the 
thermal gradients can be made if one recognizes that 7114 

and 7314 are given by 

73/4 = (a2/~){0.32119 - [(r/al2/41} (15) 
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In conclusion, the concept of the half-heating time offers 
a simple manner of estimating the rate of development of 
temperature distributions and the manner in which they 
depend on the physical properties of the system. For 
cylindrical objects it is approximately given by a remark- 
ably simple equation whose accuracy extends over a wide 
range of conditions. 
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